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Abstract--We have examined the linear stability of the fully developed natural convection flow in a 
differentially heated tall vertical enclosure under non-Boussinesq conditions. The three-dimensional analy- 
sis of the stability problem was reduced to a two-dimensional one by the use of Squire’s theorem. The 
resulting eigenvalue problem was solved using an integral Chebyshev collocation method. The influence of 
non-Boussinesq effects on the stability was studied. We have investigated the dependence of the critical 
Rayleigh number on the temperature difference. The results show that two different modes of instability 
are possible, one of which is new and due entirely to non-Boussinesq effects. Both types of instability are 

oscillatory, and the critical disturbance wave speed is zero only in the Boussinesq limit. 

1. INTRODUCTION 

We study the convection flow in a tall vertical enclos- 
ure whose left and right walls are differentially heated. 
This type of flow is a problem of considerable interest 
and is frequently encountered in applications such as 
thermal insulation systems, heat exchangers, elec- 
tronic equipment, and nuclear reactors. In many such 
applications, density (or temperature) differences are 
so large that non.-Boussinesq conditions prevail. 

The objective Iof the present work is to examine the 
linear stability of convection flow in a differentially 
heated tall vertical cavity under non-Boussinesq con- 
ditions. Solution of the Boussinesq equations is gen- 
erally preferred :since they are much simpler in their 
form. Unfortunately, in many of the applications cited 
above, density variations can be extremely large: thus 
the Boussinesq approximation is not applicable. 

There are a number of published studies that are 
related to the present investigation. To gain a better 
perspective of results to be presented, we summarize 
their primary conclusions. 

In the limiting case of small temperature difference, 
the flow coincides with that of pure natural convection 
in a tall open channel since, due to the central sym- 
metry of the velocity profile, the mass flux in each 
horizontal section is zero for both cases. The stability 
of this flow in thl- Boussinesq limit has been analyzed 
by a number of investigators 11-71. The major con- 
clusions are that for Prandtl numbers less that 12.45 
the instability is shear driven and stationary, and the 
Prandtl number dependence is slight. The instability 
is one in which the disturbance energy is gained from 
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the action of the shear forces in the mean flow resulting 
from natural convection. For Pr = 0.71 the critical 
Rayleigh and wave numbers are found to be 
Raf = 5706.27 and a,” = 2.8. For Prandtl numbers 
larger that 12.45, the instability is thermally driven 
and oscillatory. The instability in this case is one in 
which the disturbance energy is gathered primarily 
from the potential energy associated with the buoyant 
forces. 

Recently, Suslov and Paolucci [8] showed that, 
when properties are allowed to vary (non-Boussinesq 
case), the solutions for the basic flow are different 
for open and closed cavity cases, since due to the 
asymmetry of the velocity profile the net mass flux is 
not necessarily zero for the open channel. Thus the 
stability problem for the closed cavity flow under non- 
Boussinesq conditions requires a separate analysis. 

Taking into account only viscosity variations for 
the flow within a tall but closed cavity, Thangam and 
Chen [9] and Chen and Pearlstein [7] find that the 
instability is always oscillatory for arbitrary values of 
Prandtl number. No quantitative information regard- 
ing wave speeds is given. 

The present paper is organized as follows. First we 
formulate the problem to be studied. This is followed 
by a description of the basic flow which is an exact 
solution of the problem. We next formulate the linear 
stability problem of this flow, and subsequently solve 
the resulting perturbation equations using an integral 
Chebyshev collocation method. The primary con- 
clusions of the study. for air as the working fluid, are 
that : (i) the instability is always oscillatory; (ii) for 
temperature differences smaller than a critical value, 
the instability is always shear driven and (iii) for tem- 
perature differences greater than the critical value, a 
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NOMENCLATURE 

A,, A, height to width and depth to width 
aspect ratios 

C wave speed 

cp9 CV specific heats at constant pressure 
and constant volume 

D enclosure depth ; differential 
operator 

EKE> EPE disturbance kinetic and thermal 
potential energy 

9 absolute value of the gravity force 
Gr Grashof number 
H enclosure height 
k thermal conductivity 
L enclosure width 

ni unit vector in direction of gravity 
force 

N number of collocation points 
P thermodynamic pressure 
Pr Prandtl number 
Ra Rayleigh number 
S,, Sk Sutherland constants 
t time 
T temperature 
AT temperature difference 
ui, (u, v, w) velocity components 
wiJ discrete integral operator 
x,, (x. y, Z) spatial coordinates 
.jZ transformed x-coordinate. 

Greek symbols 
c( thermal diffusivity ; longitudinal 

wave number 

B thermal expansion coefficient 

i ’ ratio of specific heats ; transverse 
wave number 

I- fluid resilience parameter 

6ij Kronecker delta 
& dimensionless temperature difference 

isothermal compressibility coefficient 
; bulk viscosity ; dynamic pressure 

gradient parameter 

p dynamic viscosity 
kinematic viscosity 

FI hydrodynamic/hydrostatic pressure 

P density 
cr coefficient of tension ; complex 

amplification rate 

Tij shear stress tensor. 

Subscripts 
C evaluated at cold temperature ; 

critical value 
h evaluated at hot temperature 
I imaginary part 
r evaluated at reference conditions 
R real part. 

Superscripts 
0 point on marginal stability curve 

disturbance quantity 
* dimensional quantity 

basic how quantity 
h disturbance amplitude 

transformed quantity. 

new mode of instability (due entirely to non-Bous- thermal diffusion speed u, = q/L, the average tem- 
sinesq effects) is found which is purely thermal in perature T, = (Tz+ T3/2 and the initial pressure 
character in that the disturbance energy is gained from P, = Pt, respectively. The problem is non-dimen- 
the potential energy associated with the buoyant sionalized as follows : 
forces, and is analogous to the type of instability found 
for Pr > 12.45 in the Boussinesq case. x*= Lx, t* = (L/u,)t u*= u,ui rI* = p&I 

2. PROBLEM FORMULATION 

Consider the flow of a fluid in an enclosure having 
aspect ratios A, = H/L, A, = D/L, where L is the 
distance between the vertical walls, and Hand D are 
height and depth of the enclosure, respectively. The 
x*-coordinate is fixed on the left wall, and the y*- 
coordinate is positive in the upwards direction. The 
left and right walls of the cavity are isothermally 
heated and cooled, respectively, resulting in a tem- 
perature difference AT = T,f- T,* > 0. The other four 
walls are taken adiabatic. Asterisk superscripts denote 
dimensional quantities. 

We nondimensionalize the problem with reference 
quantities for length, velocity, temperature and ther- 
modynamic pressure using the enclosure width L, the 

p* = prp T* = T,T P* = P,P c,* = cp,cp 

(1) 

where we have introduced the reference density pT, 
dynamic viscosity pr, bulk viscosity 1,, thermal con- 
ductivity k,, specific heats at constant pressure and 
volume cp, and c.,, coefficient of thermal expansion /$, 
and thermal diffusivity LX, = k,/p+ all evaluated at 
the reference temperature and pressure. 

The resulting dimensionless governing equations, 
valid under low Mach number conditions, but allow- 
ing for arbitrary density variations, are given as fol- 
lows (see [lo]) : 
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(2) 
ap Wi 
7$+,x=0, 

I 

dpuju, XI RaPr 

-:= -axl+ axj 
T(p-l)n,+Prz 

J 

P = P(P? T) (5) 

where U, = (u, u, w) are velocity components in the 
xi = (x,y, z) directions, respectively, II(x,, t) = 
p(x,, r) -P(t) - (RaPr/2&)xin, is a reduced pressure 
which accounts for hydrodynamic effects, 
n, = (O,- 1,O) is the unit vector in the direction of 
gravity, and zd is the viscous stress tensor given by 

(6) 

where 6, is the Kronecker delta. 
The spatially u.niform pressure P = P(t) appearing 

in the energy equation and the equation of state 
accounts for the change of static pressure with time. 
The separation of pressure components in the low 
Mach number limit is essential in removing acoustic 
waves from the equations: however, this splitting 
introduces P as an extra unknown. The general equa- 
tion of state (5) can be rewritten more explicitly as 

p = exp (-[,r/IdT’+[rcdP’) (7) 

where /I = - (ap/aT)p/p is the coefficient of volume 
expansion, and IC = (ap/aP),/p is the isothermal com- 
pressibility coefficient. Now using the equation of 
state (7) and energy equation (4), it can be readily 
shown that the continuity equation (2) can also be 
rewritten as 

aJ_ 
axi 

_ _‘KC,dP+B2_ 
YT cp dt pep ax, 

Subsequently, integration of (8) over the cavity vol- 
ume V leads to the following differential-integral 
equation for the static pressure : 

dP -= 
dt yr I-KC”... 

(9) 

! -dV 
” CP 

This equation is complemented by the initial condition 

P=l att=O. (10) 

The independent dimensionless parameters appear- 
ing in the equations are respectively the Rayleigh num- 
ber, the temperature difference, the Prandtl number, 
and a measure of fluid resilience : 

Ra = BrgATL3 
E = $,AT Pr = 5 

VA 4 

(11) 

In the above definitions g is the magnitude of the 
gravitational field, and v, = ,ur/pr is the kinematic vis- 
cosity, yr = cJc,, is the ratio of specific heats and 
6, = (aP/aT),/PI, is the coefficient of tension, all 
evaluated at the reference temperature. 

We emphasize the fact that equations (3), (4) and 
(7)-(9) are applicable to the natural convection flow 
of any fluid within a fully enclosed cavity. No assump- 
tions regarding property variations are made. Solu- 
tions of these equations account for all non-Bous- 
sinesq effects in natural convection. Most non- 
Boussinesq results to date are for air, whose flow may 
accurately be described by using the Stokes assump- 
tion 1 = -$ and the thermodynamic properties by 
the calorically perfect gas assumptions cp = 1, c, = 1, 
b = l/T, IC = l/Pand c = l/T. Subsequently, we have 
that I = (yr- l)/yr and equations (7)-(9) simplify to 

p’P 
T (12) 

(13) 

where S is the cavity dimensionless surface area. Alter- 
nately, using the equation of state (12) in the global 
mass conservation statement 

; pdV=O 
s 5 

the thermodynamic pressure can be obtained from 

(15) 

In addition, for air yC = 7/5, Pr = 0.71, and the trans- 
port properties are accurately approximated by the 
Sutherland law models 

fi = T”‘(Z) k = T3/‘(s) (16) 

where, using T, = 300 K and normal pressure, the 
dimensionless Sutherland constants are S,, = 
SyTr = 0.368 and Sk = Q/T, = 0.648 (see White 

1111). 
Boundary conditions at the vertical walls are given 

by 

u,=O T=T,,=l+c atx=O (17) 

and u,=O T=T,=l--E atx=l. 

From the definition of E we note that 0 < E < 1 cor- 
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responds to the dimensional temperature difference 
range of 0 < AT < co. Obviously the range of validity 
of the Sutherland law is considerably less. As a point 
of reference, note that E = 0.6 corresponds to 
Tz = 480 K and T,* = 120 K for T, = 300 K. and rep- 
resents a practical upper limit on the validity of the 
results for air resulting from increasing errors in the 
Sutherland law conductivity at the cold wall [12]. 
Finally we note that Paolucci [lo] has shown that, in 
the limit E -+ 0, we have P = 1, dP/dt = 0, and equa- 
tions (2)-(5) reduce to the classical Boussinesq equa- 
tions. It is emphasized that the Boussinesq equations 
will yield relatively accurate solutions only for small 
temperature differences. For example, Gray and Gior- 
gini [ 131 show that the maximum temperature differ- 
ences for air and water for which the Boussinesq equa- 
tions are applicable are 28.6 and 1.25”C, respectively. 

3. BASIC FLOW 

In the region located in the middle part of the 
enclosure, for large enough aspect ratios (AH, A,) >> 1 
a fully developed flow can exist (AH 2 (2+&z/400) 
as was shown by Chenoweth and Paolucci [14], and 
typically A, 2 10 if walls in the depth direction are 
adiabatic). For such a flow ii, = (0, @x). 0), T = T(x), 
Ii = ii(y) and P = const., so that the steady-state 
problem reduces to 

(18) 

(19) 

’ 1 (S > 
-1 

p= =dx 
“T 

(21) 

fi=O T=T,,=l+& atx=O (22) 

and a=0 r=T,=l--E atx=l 

where 1 = 1 - (2E/RaPr) dIi/dy = const. and. using 
(16). we have ,!i = p(L)=‘) and R = k(T). In addition, 
taking into account the fact that the total mass flux in 
every horizontal section must be zero we have the 
additional implicit integral link to obtain /I : 

s podx = 0. (23) 
0 

The solution of these equations is (see ref. [14]) 

fh -f 
x=fh (25) 

x i.+ f (e,w-w,e)-qe,4-4,~) K -1 1 (26) 
k 

where f, F, Q, S. 0, 4, w are functions of T and S, and 
are given in Appendix A. The expression for 1, while 
not given here, can also be written in an explicit form 
[14]. It can be shown that the solution in the Bous- 
sinesq limit (E << 1) to leading order reduces to P = 1 
and 

T= 1+&(1-2x) (27) 

fi = ;,(I -x)(1 -2x). (28) 

The basic flow solution is displayed in Fig. 1 for 
several values of a. From Figs. l(a) and (b) we see 
immediately that in general the solution does not have 
any symmetry with respect to x. Only in the Bous- 
sinesq limit is the flow symmetric about x = l/2, but 
this is not the case when E is finite due to property 
variations. In Figs. l(c) and (d) we show the depen- 
dence of the thermodynamic pressure P and the scaled 
hydrodynamic pressure gradient 3, on the temperature 
difference. Both of them decrease for the given range 
of E. A more detailed discussion of the basic flow is 
given by Chenoweth and Paolucci [14]. 

Alternately, the basic flow solution can be obtained 
numerically using an integral Chebyshev collocation 
method [15, 161. In this case equations (18))(23) are 
solved over the domain 2 E [ - 1, l] (a = - 1+2x) for 
convenience. The method can be described as follows. 
The discrete integral operator IV, is defined by the 
following relationship 

s 

i IV+1 
F (2) = _,.f(t)d:-=F(.t) = 1 WJG,) (29) 

,= I 

with collocation points selected at ,?, = cos [n(i- l)/ 
N], 1 6 i < IV+ 1. Then the solution of the problem 
can be written in the form 

Ntl 
C Wj/jlk(q) 

r = (1++-2E;;: (30) 
,z, Wljlk(~) 

(31) 

where i = 1 )...) N+l, e, = 1, 

and 

(32) 
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E 

Fig. 1. Basic flow solution: (a) velocity and (b) temperature for E CC 1 (---). E = 0.3 (---), 
E = 0.6 (. - - -), (c) thermodynamic pressure and (d) hydrodynamic pressure gradient as functions of E. 

It should be noticed that, in the Boussinesq limit, 
(33) since the variation of temperature is small, p(T) and 

The system of nonlinear eqUatiOnS (30) is solved first 
k(T) reduce to constants equal to unity. Taking into 
consideration the fact that 

using the IMSL [ 171 routine NEQNF. Subsequently, 
P and 0, are explicitly evaluated from (33) and (31). 
Finally, using a simple iterative procedure, 1 is found 
from 

Nfl 
c w,.?r = [a?+’ + (- l)“]/(m+ l), 

,= 1 

(34) the numerical solution equations (30) and (3 1) reduces 
to the analytical solution equations (27) and (28) 



evaluated at the collocation points (accounting for the $=,qrT k’=&T 
coordinate change) : 

where_& = (dfldT). In addition, substituting (37) into 
z = ei - Ei, (35) (17), we obtain the boundary conditions for the per- 

27, = g.$(.?,+e.)($-e,). 
turbed quantities : 

u:=T’=o atx=O,l. (43) 

To ensure the accuracy of the numerical method, Finally, from (15) we obtain 
the non-Boussinesq numerical results were compared 
with the analytical solution obtained earlier. It has 
been shown that the discretization error decays expo- 

p’=p’ I 
I 

TdI’. 
v VT’2 

(44) 

nentially with increasing number of collocation points 
[18]. The accuracy of the solution approaches the Since (AH, A,) >> 1, then within the fully developed 

computer round off error of lo-l4 when the number region we assume periodicity in the y and z directions 

of collocation points reaches 22. We note that in so that the disturbance quantities (u;, II’, p’, T’) 
reporting all numerical results in the Boussinesq limit are of the form f’(x, y,z, t) =~(x)e1(OLY+~7)+0t and 

of E K 1 we actually use the value of E = 10e5 for the P’(t) = pent, where P = const., c( and y are the longi- 

computations. tudinal and transverse real wave numbers, and 
cr = cR + ia, is the complex amplification rate. The real 
and imaginary parts of B represent the amplification 

4. STABILITY ANALYSIS rate of the disturbance and the frequency, respectively. 

We now decompose the dependent variables into The mode is stable, neutrally stable, or unstable 

two parts, the basic flow and a disturbance : depending on whether or, is negative, zero, or positive. 
Now dropping the hats, and since from (44) we have 

24, = a,(x) + ul(x,y, z, t) that 

p = P(x) + P’(X, Y, =, t) 

P= I s PZ ’ T(x) 
n = n(y) + II/(x, y, 2, t) 

---dx ifE*+Y* = 0 
0 i’(x)2 (45) 

T = T(x) + T’(x, y, z, t) I 0 ifa’+?* # 0 

P = P+ P’(l). (37) then equations (38)-(41) result in the following system 
of ordinary differential equations : 

Note that, consistent with the low Mach number 
approximation, the thermodynamic pressure dis- P(Du + iav + iyw) 
turbance P’ can depend only on time. 

Substituting (37) into equations (3), (4), (6), (12) 
and (13), substracting the basic flow, and neglecting 

= D(kDT+~,D~?“-/?(a2+yz)T-~P (46) 

second order disturbance terms, we obtain the fol- [p(a+iafi)]u = -DII+Pr{:D[p(ZDu-iictv-iyw)] 
lowing set of equations for the disturbance quantities : 

-/I[@’ +y2)u-i(cxDu+yDw)] +icr,&DoT} (47) 

[jj(a+iclij)]v+j?DBu 

> 

XI’ RaPr 37; 
RaPr 

=-dx,+2Ep’Q+PlF 
= -ic#n-- 

2E p 

(39) 
+Pr{D[~(Du+iau)+ji,D~T] 

-,n[(~r~+y~)~+fa(2iDu+~~~+yw)]} (48) 

[p(a+iM)]w = -iyn+Pr{D[P(Dw+iyu)] 

w -_P[(a2+y2)w+~y(2iDu+au+yw)]} (49) 

(41) 
[p(a+iccfi)]T+pDZ% 

= D(~DT+&D~T)-&(a2 +y2)T+I-oP (50) 

P P T 

P=p-F 
(51) 

where D” = d”/dx”. Equations (45)-(51), together 

(42) with the boundary conditions 

u,= T=O atx=O,l (52) 

p’ P’ T 
p P i= 

where 

and we use the fact that 
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constitute a three-dimensional eigenvalue problem for 
the complex amplification rate 0. 

Using Squire’s transformation 

it can be easily shown that equations resulting from 
(45)-(48) and (50), (51) are independent of $ and 7, 
while that resulting from (49) depends on all variables. 
Furthermore, if the equation corresponding to (49) is 
then multiplied by $* (the complex conjugate of i+) 
and integrated by parts over the width of channel, and 
use a theorem proved by Vasilyev and Paolucci [18], 
we then obtain that 

(54) 

Thus the eigenvalue associated with the transverse 
momentum equation always has a negative real part 
since p > 0 and ii > 0. We note then that the reduced 
eigenvalue problem is identical to the problem 
obtained without the use of Squire’s transformation 
but with w = y = 0. Furthermore, since Ra < Ra, 
then Squire’s theorem holds, so that two-dimensional 
disturbances are the most unstable. Thus, in pre- 
senting all results, we drop the tilde accents reflecting 
the above finding. 

Due to equation (45), the stability calculations for 
the case where CI = 0 have been carried out separately. 
We have found that these disturbances are stable in all 
cases. Subsequently, the two-dimensional eigenvalue 
problem can be rewritten in matrix form as : 

‘41, A12 1113 Al4 u 

A,, A22 1 =424 v ‘ 23 

A3, 0 1 0 T 1 33 

A _ 4, A42 1 1 43 0 l-I 

r 
1 0 0 01 [ul 

where A, are operators defined in Appendix B. Equa- 
tion (55) together with boundary conditions 

u=v=T=O atx=O,l (56) 

defines the two-dimensional complex eigenvalue prob- 
lem for the amplification rate CT. 

As done in the numerical solution of the basic flow, 
we solve the eigenvalue problem in the domain 
_?.E [ - 1, 11. Using discrete integral and differential 

operators [15, 161, the eigenvalue problem can be 
rewritten in discrete form as 

where 

AX = aBX, (57) 

X=(u; /..., u;;+,,v; ,..., v;+,,T; ,..., 

T;,,, ~,,...,Kv+,)’ (58) 

and A and B are the [4(N+ l)] 0 [4(N+ l)] matrices 
obtained from collocation discretization of (55). The 
eigenvalues e are then obtained using the IMSL [17] 
routine GVLCG. 

For fixed parameters c( and E the values of Ra and 
cI at which cR = 0 are found. Repeating such a pro- 
cedure for different values of t( and the same E, we 
obtain the marginal stability curve, say Ra,(cc, E) and 
the corresponding frequency a,,(cc, E). Critical values 
Ra,(a,,E) = min Ra,(cc,E) and O,,(E) = ~,,(c(,,E), and 
thus also the &itical wavespeed c, = - ~,,/a, are then 
obtained for different values of E E (0, 0.61. Results of 
these calculations using the above procedure and the 
previously noted parameter values appropriate for air 
are presented next. In addition, all results have been 
obtained using 39 Chebyshev modes, and all values 
are believed to be correct to the significant figures 
reported. 

5. RESULTS 

In Fig. 2 we show marginal stability curves and 
critical parameters as functions of a. From the mar- 
ginal stability curves shown in Fig. 2(a) we see that as 
the temperature difference parameter is increased, at 
first the only effect appears to be a shift of the marginal 
curve to higher values of Rayleigh numbers. This leads 
to larger values of Ra, as shown in Fig. 2(b). For the 
temperature difference parameter range of 0 < E < a*, 
where E* = 0.536, the critical Rayleigh number can be 
well approximated by Ra,/Raz = 1 + 1.450~’ 
+2.914e4, where Raz = 5706.6927. Note that the 
value of Ra:/Pr = 8037.5944 coincides with Grz given 
in [8], where Grz is the Boussinesq limit critical 
Grashof number for the flow in a tall open vertical 
channel. This fact shows that in the Boussinesq limit, 
the natural convection flows for closed and open tall 
vertical channels are similar. In contrast, in the non- 
Boussinesq regime the flow in a closed cavity is more 
stable than one in an open channel [8]. 

The increase of Ra, with E is accompanied by a 
slight decrease in the critical wavenumber tl, from the 
value of c$ = 2.810 in the Boussinesq limit as shown 
in Fig. 2(c). One important point to note, which can 
be seen from Fig. 2(d), is that the critical wave speed 
is zero only in the Boussinesq limit. For the range 
0 < E < a* the critical wave speed is negative and is 
well approximated by c,/Ra, = -4.1 x 10m3e (it can 
be shown that the specific constant is a function of 
Prandtl number and the dimensionless Sutherland 
constants). This result can be explained by inviscid 
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Fig. 2. (a) Marginal stability curves for E << 1 (-), E = 0.3 (---) and E = 0.6 (----) and (b)-(d) 
critical parameters as functions of E. 

stability theory as follows. Based on the numerical 
results for Pr = 0.71, it appears (see below) that this 
instability mechanism is shear driven and possibly 
linked to the presence of an inflection point in the basic 
velocity profile (see [19]). Indeed, it can be shown that 
in the limit Pr -+ 0 equation (55) has a singularity at 
the location where the wave speed equals the basic 
flow velocity. This singularity is removable however 
(as it should be) if the basic flow velocity profile has 
an inflection point at the same location. This is exactly 
the same situation as in the Boussinesq limit. Note 
however that in the Boussinesq limit this singularity 
occurs at x = l/2 where the basic velocity is zero and 
thus the wave speed is also zero; this location also 
corresponds to the location of the inflection point of 
the basic velocity profile. However, when properties 

in the basic flow are allowed to vary, the location of 
the inflection point and subsequently the location of 
the critical layer is given by 

x,=;+ 
14+ 17&+23S,+26S,S, 

60(1 f&)(1 +S,, s 

+ O(2) x ; +0.29334~ (59) 

and the basic flow velocity at this location, and thus 
the wave speed, is given in this limit by 

cc = - g$).f(&, Se)&+ O(E3) 

z -2.63912 x 10-3RuCs (60) 

where f(&, S,) is a positive definite function which 
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depends on the Sutherland constants and is too com- 
plicated to be given here. It is noted here that for 
Pr > 0, due to the contribution of viscous terms, the 
location of the critical layer is not the same as the 
location of the inflection point, but the two locations 
are found to be very close to each other. We stress 
the fact that the classical result that the instability is 
stationary for Pr < 12.45 is only due to the fact that 
all property variations are neglected. When property 
variations are included, the basic flow does not retain 
the odd symmetry about .X = l/2. Note that any mech- 
anism which breaks the odd symmetry could possibly 
change the instability mechanism from stationary to 
oscillatory. In a study of instability in a differentially 
heated tall vertical annulus by Choi and Korpela [20] 
and Lee et al. [21] the odd symmetry was broken by the 
annulus curvature parameter. In their case a similar 
observation was made in that the instability was oscil- 
latory for any finite value of the curvature parameter. 
However, the details are very different since in their 
case : the resulting; wave speed is in the opposite direc- 
tion as ours ; the location of the critical layer does not 
coincide with the location of the inflection point of 
the basic flow ; and lastly the parameter breaking the 
symmetry is a geometric one while in our case it is a 
physical one. A negative wave speed was also noticed 
by Simpkins [22] in his experiment on convection flow 
in a tall vertical ca.vity. He observed a slow downward 
motion of secondary rolls in a rectangular cavity of 
aspect ratio AH = 40 for E x 0.15 and Ra z 6200. The 
speed of motion he found is in close agreement with 
the value predicted by our calculations [23]. Con- 
sistent with (59), we also observe from the disturbance 
fields plotted in Figs. 4(a)-(d) that as E increases the 
disturbance is located closer to the cold wall. At 
E z 0.475 we firs: observe the appearance of a sec- 
ondary branch at low wavenumbers in the marginal 
stability curve, and as E is increased past E* the critical 
parameters switch. to this lower branch. This switching 
at a* is responsib1.e for the change in behavior of Ra, 
and the abrupt changes in CI, and c, seen in Figs. 2(b)- 
(d). We note that our values of the critical parameters 
in the Boussinesq limit are in excellent agreement with 
the values of Grp = 8037 and a,” = 2.81 obtained by 
Chait and Korpe1.a [24]. Furthermore, the result that 
the instability beclsmes oscillatory when property vari- 
ations are accounted for is consistent with the results 
of Thangam and Chen [9] and Chen and Pearlstein 

171. 
To understand the physical mechanisms responsible 

for the two different modes of instability, we will look 
at the two-dimensional disturbance kinetic and ther- 
mal potential .energy balances, EKE = i(p(lul’ + 
lu1*)) and EPE = f(pl TI’), respectively. Multiplying 
equation (47) by u* and equation (48) by v*, adding 
them together, and multiplying equation (50) by T*, 
integrating them over the interval 0 < x ,< 1, and tak- 
ing the real parts we get 

QREKE = 
RaPr 

&I+z,,+ ~ 2E &+Pr& (61) 

aa& = ET, + x:k (62) 
where all the terms on the right-hand sides are defined 
in Appendix C. We see that the time rate of change of 
the disturbance kinetic energy oREKE is the sum of 
contributions due to compressibility effects Zn, pro- 
ductions due to shear E,, and buoyancy (RaPr/2&)&, 
and viscous dissipation PrIZ,,, while the time rate of 
change of disturbance thermal potential energy aREpE 
depends on the balance between the term Zrur which 
corresponds to the interaction between the basic flow 
temperature gradient and the perturbed velocity, and 
thermal diffusion &. The relative values for the 
different terms entering the disturbance kinetic energy 
equation for the critical points labeled A-D in Fig. 
2(a) are presented in Table 1 (note that at these points 
rrR = 0). Since the amplitude of the disturbance is 
arbitrary in a linear analysis, the normalization is done 
in such a way that PrZ:, = - 1. In Fig. 3 we also 
present the distributions of the integrands of the dis- 
turbance kinetic energy equation correspondingly 
denoted by an, cr,,, (RaPr/ZE)o, and Pm,,. Note that 
the scales on the individual plots are arbitrary, thus 
one can only compare the relative energy con- 
tributions within each such plot. We can see that for 
Boussinesq and slightly non-Boussinesq regimes [cor- 
responding to points A and B in Fig. 2(a)] the insta- 
bility is a shear driven one, where the disturbance 
derives its energy from the shear of the basic flow 
which is largest near the center of the cavity. In 
addition we see that the maximum shear production 
always occurs near the location of the critical layer, 
i.e. the location where the disturbance wave speed is 
equal to the local basic flow speed. In cases where the 
instability is shear driven, as noted earlier, the critical 
layer is located very close to the inflection point of the 
basic flow, which in turn moves towards the cold 
wall as E increases. We should also note the fact that com- 
pressibility effects do not contribute much to the dis- 
turbance kinetic energy balance in the integral sense 
in the weak non-Boussinesq regime (see Table 1, point 
B), but it does not mean that the disturbances are incom- 
pressible [see Fig. 3(b)]. When E > E* the disturbance 
derives the majority of its kinetic energy from the ther- 
mal interaction with the basic flow density field through 
buoyancy, hence resulting in a buoyant instability. The 
appearance of this new mode of instability is explained 
as follows. First we note that the local buoyancy contri- 
bution to the kinetic energy of the disturbance is given by 

RaPr 1 P 
~0~ = RaPr- 

2E 2 (1+2&@2 
(Qz’*), (63) 

where we have resealed the temperature to remove the 
E dependence from the boundary conditions by using 
the relation B = (T* - Tr)/(T$-- T,*) = (T- 1)/2E (so 

that t? = + l/2 at x = 0, 1). Furthermore, we note that 

z 1 - 3.55987 x 1O-2a2 

(64) 
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Table 1. Disturbance kinetic energy terms for the different values of 
critical parameters labeled A-D in Fig. 2 

Point z “Y (RaPr/2&)& 

A 0.0000 0.9418 0.0582 
B 0.0008 0.9527 0.0465 
C - 0.0020 0.9892 0.0128 
D -0.1448 0.4590 0.6858 
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Fig. 3. Distributions of integrands appearing in the disturbance kinetic energy balance equation: cm 
(- ), (r,, (---), (RaPr/2~)cra (----) and Pro, (. .). Plots (a)-(d) correspond respectively to 

critical points A-D shown in Fig. 2(a). Vertical dotted lines denote locations of the critical layer. 

and depends linearly with the Rayleigh number (through 
the basic flow dependence), then for fixed Prandtl 

0 = +,,+; s 
i > 

x(1 -x)s+O(s*). (65) number the ratio of the buoyancy contribution to that 
k of the shear is always of the same order of magnitude, 

which numerically is seen to be small (see Table 1 for 
Now in the Boussinesq limit (E -+ 0) the buoyancy Pr = 0.71). On the other hand, when E is finite the 
contribution becomes RaPr f (&I*), . Since the shear buoyancy contribution to the kinetic energy of the 
contribution to the disturbance kinetic energy disturbance to leading orders in E becomes 



Stability of natural convection 2153 

which is largest in the vicinity of the cold wall since 
the term in bracklets is largest at x = 1 : however, both 
8 and v* are zero there. The actual x-location where 
this term is largest depends on E, S,, S, and the specific 
disturbance correlation. We finally note now that for 
fixed Prandtl number the ratio of the buoyancy con- 
tribution to that of the shear can be increased by 
increasing E. Thus the buoyancy contribution can be 
enhanced by either increasing the temperature differ- 
ence for a specific fluid, or by varying the Prandtl 
number using different fluids for a fixed temperature 
difference. Ultimately, for fixed Prandtl number, at E* 
the buoyancy contribution becomes larger than that 
of shear and the mode of instability subsequently 
switches to a buoyant one. From the above discussion, 
the switch in mode of instability can be directly traced 
to the nonlinear density variation. As can be seen from 
equation (66) this nonlinearity in turn is due primarily 
to the nonlinear variation with temperature through 
the equation of state, and only secondarily through 
the variable conductivity. When the mode of insta- 
bility becomes buoyant, we also note that global com- 
pressibility effects are significant, albeit stabilizing. In 
addition, as can be seen from Fig. 3(d) the location of 
the new critical layer corresponds to the location of 
maximum disturbance production due to buoyancy, 
which is closer to the cold wall than the location of 
the inflection point of the basic flow. Thus we conclude 
that the upper and lower marginal stability curves 
obtained for E = 0.6, and shown in Fig. 2(a), obvi- 
ously correspond to branches in which shear and 
buoyancy production dominate, respectively. The dis- 
turbance fields corresponding to the critical modes on 
these two branches are shown in Fig. 4. Note that the 
fields are shown for one wavelength, and their lengths 
are scaled by their corresponding critical values. Thus, 
the actual wavelength of the buoyant mode is more 
than a factor of two larger than the shear one. The 
change in mode of instability from one of hy- 
drodynamic origin to one of thermal origin and the 
corresponding behaviors of the critical parameters are 
only superficially similar to those observed in the 
Boussinesq case [4] when the Prandtl number is 
increased past a value of 12.45. The two instabilities 
are not the same since in our problem the local Prandtl 
number is always less than unity and thus the source 
of instability is of a different nature. 

We conclude this section with a few words regarding 
the sensitivity of the above stability results on the 
dimensionless parameters that up to this point we 

have fixed, i.e. I, S,, S,, and Pr. Since in all cases the 
instability occurs for CI > 0, then the results do not 
depend at all upon P. In addition, upon varying S, 
and S, over reasonable values for gases, we observe 
that the qualitative stability picture remains the same, 
and quantitatively the results are only weakly affected. 
Lastly, as expected from the above discussions, the 
shear driven instability is only weakly affected by vari- 
ation of Prandtl number. On the other hand, the buoy- 
ant instability is quantitatively sensitive to the Prandtl 
number. However, this sensitivity is fairly trivial since 
the local buoyant contribution to the kinetic energy 
of the disturbance is given by (RaPr/2&) erg. Thus 
increasing the Prandtl number for fixed E is approxi- 
mately equivalent to quadratically increasing the mag- 
nitude of crB (through E) for fixed Prandtl number. 
This correspondence establishes a relationship to the 
instability occurring in the Boussinesq limit for large 
Prandtl numbers. However, in contrast to our results, 
it should be noted that, in the Boussinesq case for 
Pr > 12.45, the instability sets in as two waves 
traveling in opposite directions on either side of 
x = i. Furthermore, since their wave speed is larger 
than the maximum speed of the basic flow, no critical 
layer exists. 

6. CONCLUSIONS 

We have examined the linear stability of the fully 
developed natural convection flow of air in a differ- 
entially heated tall vertical enclosure under non-Bous- 
sinesq conditions. The influence of the non-Bous- 
sinesq effects on the stability was studied over a large 
range of Rayleigh number and temperature difference. 
Our results are in excellent agreement with known 
results in the Boussinesq limit. In the non-Boussinesq 
regime we have shown that the mode of instability is 
controlled by a competition between the shear mech- 
anism associated with the flow due to the temperature 
difference and a buoyancy mechanism (which 
becomes dominant only when E > 0.536) that is clearly 
due to nonlinear density variations. Furthermore, 
while the critical wave speed is zero in the Boussinesq 
limit, for any finite value of E the critical wave speed 
is negative, since, due to property variations, the 
location of maximum disturbance production shifts 
to the region close to the cold wall. This new result 
is in qualitative agreement with experimental data, 
reported in ref. [22]. 
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f(T) =:&F(r) 

F(s) = r-tan-‘z 

6 = 2( 1+ S,)S’~ 

Q = 8f (d -f (41 

e(s) = (T* -zt) + (S,/S, - 1) In 
1+zz 
__ ( ) 1+r: 

+(T) = 2(2’-t;)/15+2(S,,/S,- l)lf(r) 

-f (%)I/3 

w(z) = b*FW -@(dl - [f(z) -J-Cdl 

+2(S,/S,-l){[F(z)-G(~)l-[F(r,) (AlI 
- Gh)l} 

where 

and 

are Bernoulli numbers generated for j = 1,2,3, and 

m 0 m! =p 
n n!(m-n)! 

are the binomial coefficients. Subscripts h and c mean that 
the quantities are evaluated at F= T,, = 1 +E and 
T = T, = 1 --E, respectively. 

APPENDIX B 

The operators entering the eigenvalue problem (55) for 
G( > 0 are defined as follows using the fact that Dp = p=DT 
and Dk = t&DT: 

A,, = Pr~[p(~Dz-02)+~p,DTD]-icrb 

A,* = iaPri(ipD-lp,Df) 

A,3 = iaPr$Db 

A,, = -‘D 
/s 

A*, = -Do+izprj($D+pTDf) 

AZZ = Pr~[p(D’-~a’)+p,DiD]-iao 

RaPr 1 
A,, = Pr~&(Dzl;+DOD)+ji~DTDO]+----- 

2E T 

1 
AZ4 = -iu: 

P 

AZ, = -D?= 
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+2om)+x,(D~)~]--ic(u‘ 

Ad,= -PD 

Ad2 = -iuP 

A,3 =[~(D'-Lx*)-I-~~(D*?=+~D~~D)+/&(D~*]. (Bl) 

APPENDIX C 

The terms entering on the right-hand sides of the kinetic 
and thermal potential energy balances (61) and (62) are given 
by: 

+ fa(p(uDu* - u*Du)), 

-ia(p(uDu*-o*Du)), 

-;(pTDbT(~~+iau)*), 

xTu= -+D%T*), 

xk = -~~~'(RITI*)-~(I;IDTI*) 

-@,DFD(~TI*)). (Cl) 


